Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the northeastern United States, widespread deforestation occurred during the 17–19th centuries as a result of Euro-American agricultural activity. In the late 19th and early 20th centuries, much of this agricultural landscape was reforested as the region experienced industrialization and farmland became abandoned. Many previous studies have addressed these landscape changes, but the primary method for estimating the amount and distribution of cleared and forested land during this time period has been using archival records. This study estimates areas of cleared and forested land using historical land use features extracted from airborne LiDAR data and compares these estimates to those from 19th century archival maps and agricultural census records for several towns in Massachusetts, a state in the northeastern United States. Results expand on previous studies in adjacent areas, and demonstrate that features representative of historical deforestation identified in LiDAR data can be reliably used as a proxy to estimate the spatial extents and area of cleared and forested land in Massachusetts and elsewhere in the northeastern United States. Results also demonstrate limitations to this methodology which can be mitigated through an understanding of the surficial geology of the region as well as sources of error in archival materials.more » « less
-
Abstract Centuries‐long intensive land‐use change in the north‐eastern United States provides the opportunity to study the timescale of geomorphic response to anthropogenic disturbances. In this region, forest‐clearing and agricultural practices following EuroAmerican settlement led to deposition of legacy sediment along valley bottoms, including behind mill dams. The South River in western Massachusetts experienced two generations of damming, beginning with mill dams up to 6‐m high in the eighteenth–nineteenth century, and followed by construction of the Conway Electric Dam (CED), a 17‐m‐tall hydroelectric dam near the watershed outlet in 1906. We use the mercury (Hg) concentration in upstream deposits along the South River to constrain the magnitude, source, and timing of inputs to the CED impoundment. Based on cesium‐137 (137Cs) chronology and results from a sediment mixing model, remobilized legacy sediment comprised% of the sediment load in the South River prior to 1954; thereafter, from 1954 to 1980s, erosion from glacial deposits likely dominated (63 ± 14%), but with legacy sediments still a substantial source (37 ± 14%). We also use the CED reservoir deposits to estimate sediment yield through time, and find it decreased after 1952. These results are consistent with high rates of mobilization of legacy sediment as historic dams breached in the early twentieth century, and suggest rapid initial response to channel incision, followed by a long decay in the second half of the century, that is likely dependent on large flood events to access legacy sediment stored in banks. Identifying sources of sediment in a watershed and quantifying erosion rates can help to guide river restoration practices. Our findings suggest a short fluvial recovery time from the eighteenth–nineteenth century to perturbation during the first half of the twentieth century, with subsequent return to a dominant long‐term signal from erosion of glacial deposits, with anthropogenic sediment persisting as a secondary source. © 2020 John Wiley & Sons, Ltd.more » « less
An official website of the United States government
